Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 67(2): 247-259, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29067496

RESUMO

Strong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors. However, this approach has not been validated in solid tumors. PF-06671008 is a dual-affinity retargeting (DART®)-bispecific protein engineered with enhanced pharmacokinetic properties to extend in vivo half-life, and designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex in the presence of solid tumors expressing P-cadherin. This bispecific molecule elicited potent P-cadherin expression-dependent cytotoxic T cell activity across a range of tumor indications in vitro, and in vivo in tumor-bearing mice. Regression of established tumors in vivo was observed in both cell line and patient-derived xenograft models engrafted with circulating human T lymphocytes. Measurement of in vivo pharmacodynamic markers demonstrates PF-06671008-mediated T cell activation, infiltration and killing as the mechanism of tumor inhibition.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Caderinas/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
AAPS J ; 18(5): 1300-1308, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401185

RESUMO

There are many sources of analytical variability in ligand binding assays (LBA). One strategy to reduce variability has been duplicate analyses. With recent advances in LBA technologies, it is conceivable that singlet analysis is possible. We retrospectively evaluated singlet analysis using Gyrolab data. Relative precision of duplicates compared to singlets was evaluated using 60 datasets from toxicokinetic (TK) or pharmacokinetic (PK) studies which contained over 23,000 replicate pairs composed of standards, quality control (QC), and animal samples measured with 23 different bioanalytical assays. The comparison was first done with standard curve and QCs followed by PK parameters (i.e., Cmax and AUC). Statistical analyses were performed on combined duplicate versus singlets using a concordance correlation coefficient (CCC), a measurement used to assess agreement. Variance component analyses were conducted on PK estimates to assess the relative analytical and biological variability. Overall, 97.5% of replicate pairs had a %CV of <11% and 50% of the results had a %CV of ≤1.38%. There was no observable bias in concentration comparing the first replicate with the second (CCC of 0.99746 and accuracy value of 1). The comparison of AUC and Cmax showed no observable difference between singlet and duplicate (CCC for AUC and Cmax >0.99999). Analysis of variance indicated an AUC inter-subject variability 35.3-fold greater than replicate variability and 8.5-fold greater for Cmax. Running replicates from the same sample will not significantly reduce variation or change PK parameters. These analyses indicated the majority of variance was inter-subject and supported the use of a singlet strategy.


Assuntos
Bases de Dados Factuais , Estudos de Viabilidade , Ligantes , Preparações Farmacêuticas/metabolismo , Estatística como Assunto/métodos , Animais , Haplorrinos , Camundongos , Preparações Farmacêuticas/análise , Ligação Proteica/fisiologia , Ratos , Estudos Retrospectivos
3.
Bioanalysis ; 7(13): 1605-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226310

RESUMO

The objective of antibody-drug conjugate (ADC) bioanalysis at different stages of drug development may vary and so are the associated bioanalytical challenges. While at early drug discovery stage involving candidate selection, optimization and preliminary nonclinical assessments, the goal of ADC bioanalysis is to provide PK, toxicity and efficacy data that assists in the design and selection of potential drug candidates, the late nonclinical and clinical drug development stage typically involves regulated ADC bioanalysis that delivers TK data to define and understand pharmacological and toxicological properties of the lead ADC candidate. Bioanalytical strategies and considerations involved in developing successful ligand binding assays for ADC characterization from early discovery to late nonclinical stages of drug development are presented here.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoconjugados/imunologia , Bioensaio , Desenho de Fármacos , Humanos , Ligantes
4.
Neuroreport ; 25(11): 829-832, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24848615

RESUMO

Serum ß-nerve growth factor (NGF) concentrations were determined in pregnant female, nonpregnant female, and male cynomolgus monkeys using a highly selective and sensitive immunoaffinity liquid chromatography-tandem mass spectrometry assay. NGF was significantly higher in pregnant monkeys than in nonpregnant female and male monkeys. NGF increased over pregnancy (mean NGF±SD: 541±448, 1590±520, and 3560±1430 pg/ml during the first, second, and third trimesters, respectively). These data will aid in further understanding the role of NGF during pregnancy.

6.
J Pharmacol Exp Ther ; 333(1): 2-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089807

RESUMO

PF-04840082 is a humanized prototype anti-Dickkopf-1 (Dkk-1) immunoglobulin isotype G(2) (IgG(2)) antibody for the treatment of osteoporosis. In vitro, PF-04840082 binds to human, monkey, rat, and mouse Dkk-1 with high affinity. After administration of PF-04840082 to rat and monkey, free Dkk-1 concentrations decreased rapidly and returned to baseline in a dose-dependent manner. In rat and monkey, PF-04840082 exhibited nonlinear pharmacokinetics (PK) and a target-mediated drug disposition (TMDD) model was used to characterize PF-04840082 versus Dkk-1 concentration response relationship. PK/pharmacodynamic (PK/PD) modeling enabled estimation of antibody non-target-mediated elimination, Dkk-1 turnover, complex formation, and complex elimination. The TMDD model was translated to human to predict efficacious dose and minimum anticipated biological effect level (MABEL) by incorporating information on typical IgG(2) human PK, antibody-target association/dissociation rates, Dkk-1 expression, and turnover rates. The PK/PD approach to MABEL was compared with the standard "no adverse effect level" (NOAEL) approach to calculating clinical starting doses and a pharmacological equilibrium method. The NOAEL method gave estimates of dose that were too high to ensure safety of clinical trials. The pharmacological equilibrium approach calculated receptor occupancy (RO) based on equilibrium dissociation constant alone and did not take into account rate of turnover of the target or antibody-target complex kinetics and, as a result, it likely produced a substantial overprediction of RO at a given dose. It was concluded that the calculation of MABEL according to the TMDD model was the most appropriate means for ensuring safety and efficacy in clinical studies.


Assuntos
Anticorpos Monoclonais/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Modelos Biológicos , Osteoporose/sangue , Adulto , Idoso , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Doenças Ósseas Metabólicas/sangue , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Macaca fascicularis , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/sangue , Ratos , Ratos Sprague-Dawley
7.
Curr Drug Metab ; 9(9): 854-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18991581

RESUMO

The binding of a drug to serum or plasma proteins enables the transport of drugs via the blood to sites of action throughout the body. For expediency we will use serum proteins throughout this discussion with the understanding that one can substitute the term plasma proteins in all experimental instances. Only the fraction of drug unbound from serum proteins is available to diffuse from the vascular system and accumulate in tissues thereby enabling interaction with therapeutic targets and accessibility to xenobiotic clearance pathways. Therefore, the extent of drug binding to serum proteins can have a significant impact on pharmacokinetic (PK) parameters such as clearance rates and volume of distribution. In addition, because only the unbound drug is available to interact with therapeutic targets, the extent of serum binding can have significant effects on the pharmacodynamic properties of a compound as well [1, 2] Determining the fraction of drug bound to serum proteins is a standard parameter evaluated in the process of drug discovery. Although the clinical importance of changes in serum protein binding has been questioned [3-8] the need for serum protein binding studies in the discovery and preclinical development stages is essential for the pharmacokinetic modeling of drugs [1, 3, 9]. The extent of serum protein binding is an important parameter used in many in vivo modeling calculations to estimate the volume of distribution, organ clearance, and for scale-up of pharmacokinetic and pharmacodynamic parameters from animal models to humans [3, 10, 11]. The convergence of several trends in the pharmaceutical industry including high speed chemical synthesis technologies, the increasing use of in silico ADME modeling together with early in vivo evaluations of lead compounds has increased the demand for serum protein binding determinations [12].


Assuntos
Proteínas Sanguíneas/metabolismo , Preparações Farmacêuticas/metabolismo , Algoritmos , Animais , Humanos , Microdiálise , Ligação Proteica
8.
J Pharm Sci ; 92(5): 967-74, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12712416

RESUMO

A 96-well equilibrium dialysis block was designed and constructed that is compatible with most standard 96-well format laboratory supplies and instruments. The unique design of the dialysis apparatus allows one to dispense and aspirate from either or both the sample and dialysate sides from the top of the apparatus, which is not possible with systems currently on the market. This feature permits the investigator to analyze a large number of samples, time points, or replicates in the same experiment. The novel alignment of the dialysis membrane vertically in the well maximizes the surface-to-volume ratio, eliminates problems associated with trapped air pockets, and allows one to add or remove samples independently or all at once. Furthermore, the design of the apparatus allows both the sample and dialysate sides of the dialysis well to be accessible by robotic systems, so assays can be readily automated. Teflon construction is used to minimize nonspecific binding of test samples to the apparatus. The device is reusable, easily assembled, and can be shaken in controlled temperature environments to decrease the time required to reach equilibrium as well as facilitate dissolution of test compounds. Plasma protein binding values obtained for 10 diverse compounds using standard dialysis equipment and the 96-well dialysis block validates this method.


Assuntos
Proteínas Sanguíneas/metabolismo , Diálise/instrumentação , Cromatografia , Diálise/métodos , Feminino , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...